Course SyllabusDepartment of Mathematics and Computer Science, Lincoln University
TEXT BOOK: Online textbook will be made available. INSTRUCTOR INFORMATION: ***To be provided for each section*** COURSE DESCRIPTION: The following topics will be covered in this course: vector spaces, subspaces, bases, dimension, linear dependence and independence, linear transformations, matrices, matrix operations, rank equivalence relations, eigenvalues, and eigenvectors. PREREQUISITE: MAT122 (Calculus II)COURSE GOALS STUDENT LEARNER OUTCOMES: At the conclusion of this course the student should be able to:
TENTATIVE SCHEDULE OF WEEKLY ASSIGNMENTS: Chapter 1: Linear Equations and Matrices (Weeks 13) Test 1 Chapter 2: Matrix Algebra (weeks 46) Test 2 Chapter 3: Real and Complex Vector Spaces. (weeks 79) Test 3 Chapter 4: Linear Functions, Determinants and Adjoint (weeks 1013) Test 4 Chapter 5: Eigenvalues and Diagonal matrices (weeks 1416) Test 5 Final exam COURSE ASSESSMENT LEARNING OPPORTUNITIES:^{*}
GRADING STANDARDS ASSESSMENT TOOLS:
The grading scale guideline: ^{**}
UNIVERSITY POLICY: 1) Attendance: Lincoln University uses the class method of teaching, which assumes that each student has something to contribute and something to gain by attending class. It further assumes that there is much more instruction absorbed in the classroom than can be tested on examinations. Therefore, students are expected to attend all regularly scheduled class meetings and should exhibit good faith in this regard. For the control of absences, the faculty adopted the following regulations:
Students are responsible for proper conduct and integrity in all of their scholastic work. They must follow a professor's instructions when completing tests, homework, and laboratory reports, and must ask for clarification if the instructions are not clear. In general, students should not give or receive aid when taking exams, or exceed the time limitations specified by the professor. In seeking the truth, in learning to think critically, and in preparing for a life of constructive service, honesty is imperative. Honesty in the classroom and in the preparation of papers is therefore expected of all students. Each student has the responsibility to submit work that is uniquely his or her own. All of this work must be done in accordance with established principles of academic integrity. An act of academic dishonesty or plagiarism may result in failure for a project or in a course. Plagiarism involves representing another person's ideas or scholarship, including material from the Internet, as your own. Cheating or acts of academic dishonesty include (but are not limited to) fabricating data, tampering with grades, copying, and offering or receiving unauthorized assistance or information.3) The Student Conduct Code: Students will be held to the rules and regulations of the Student Conduct Code as described in the Lincoln University Student Handbook. In particular, excessive talking, leaving and reentering class, phones or pagers, or other means of disrupting the class will not be tolerated and students may be asked to leave. Students who constantly disrupt class may be asked to leave permanently and will receive an F. 4) The Core Curriculum Learner Competencies:All courses offered through the Department of Mathematics and Computer Science require students to meet at least the following out of the 8 Core Curriculum Learner Competencies: (1) Listen and effectively communicate ideas through written, spoken, and visual means;(2) Think critically via classifying, analyzing, comparing, contrasting, hypothesizing, synthesizing, extrapolating, and evaluating ideas; (6) Apply and evaluate quantitative reasoning through the disciplines of mathematics, computational science, laboratory science, selected social sciences and other likeminded approaches that require precision of thought; (8) Demonstrate positive interpersonal skills by adhering to the principles of freedom, justice, equality, fairness, tolerance, open dialogue and concern for the common good. Note: * The instructor of a given section of the course may make some modifications to the evaluation as well as to the rest of the syllabi including but not limited to; the grade weights, number of tests, and test total points. **The grading scale guideline includes a 2point flexibility. Please consult with the department chairperson for any program updates or corrections which may not be yet reflected on this page _ last updated 9/10/2007.
