COURSE ID: CSC-152
COURSE NAME: Introduction to Programming
CREDITS: 3

TEXT BOOK:
Murach's Visual BASIC by Anne Boehm, ISBN: 978-1890774455

INSTRUCTOR INFORMATION:
***To be provided for each section***

COURSE DESCRIPTION:
This introductory programming course is designed for non-computer science majors. This course introduces the student to principles of computer programming via a visual programming language. The students will learn to create graphical user interface forms and apply visual programming to problem solving. Topics will include basic control statements. Event-driven programming will be an integral part of the course.

PREREQUISITE  MAT 098 (Algebra I)

STUDENT LEARNER OUTCOMES:
The student will

• Demonstrate fundamental skills in utilizing the tools of a visual language environment such as Microsoft Visual BASIC, in terms of the set of available command menus and toolbars.
• Demonstrate knowledge of fundamental programming control statements through tests and projects.
• Create several Graphical User Interface forms.
• Combine event-driven programming with procedural programming.
• Write VB codes to solve problems from various disciplines.

TENTATIVE SCHEDULE:
(WEEK 1-3)
Visual and component programming environment
  . Visual BASIC studio Visual set of menu commands
  . Visual BASIC studio Visual toolbar
  . Form creation
  . VB objects, object Properties
(WEEK 4)
  . Data types
  . Variables and their scopes

(WEEK 5-7)
**Control Statements**
  . IF - ENDIF statements
  . IF-ELSE-ENDIF statements
  . FOR-NEXT loops
  . DO - UNTIL loops

(WEEK 8)
  . Event-driven programming
  . Introduction to using VB in Problem-Solving

(WEEK 9-10)
**Functions**
  . User-defined functions
  . String functions
  . Math functions
  . Miscellaneous Built-in functions

(WEEK 11-12)
**Arrays**
  . Declaring arrays of variables
  . Declaring arrays of controls and objects
  . Applications of arrays

(WEEK 8-15)
  . Miscellaneous Problem solving

**TEST #1** (approximately week 6 on the computer)
**TEST #2** (written, on the official midterm week)
**TEST #3** (approximately week 13 on the computer)
**FINAL TEST** (written, during the official final exam period)
**Projects** are assigned approximately every three weeks

**ASSESSMENTS:**

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Programs/Assignments</td>
<td>20%</td>
</tr>
<tr>
<td>Tests</td>
<td>65%</td>
</tr>
<tr>
<td>In-class Computer Lab Work</td>
<td>15%</td>
</tr>
</tbody>
</table>

**The grading scale guideline:**

A      92-100%
A-     88-91%
B+     85-87%
University Policies:

1) Attendance:
Lincoln University uses the class method of teaching, which assumes that each student has something to contribute and something to gain by attending class. It further assumes that there is much more instruction absorbed in the classroom than can be tested on examinations. Therefore, students are expected to attend all regularly scheduled class meetings and should exhibit good faith in this regard. For the control of absences, the faculty adopted the following regulations:

- Four absences may result in an automatic failure in the course.
- Three tardy arrivals may be counted as one absence.
- Absences will be counted starting with whatever day is specified by the instructor but not later than the deadline for adding or dropping courses.
- In case of illness, death in the family, or other extenuating circumstances, the student must present documented evidence of inability to attend classes to the Vice President for Student Affairs and Enrollment Management. However, in such cases the student is responsible for all work missed during those absences.
- Students representing the University in athletic events or other University sanctioned activities will be excused from class(es) with the responsibility of making up all work and examinations. The Registrar will issue the excused format to the faculty member in charge of the off- or on-campus activity for delivery by the student(s) to their instructors.

2) Statement on Academic Integrity:
Students are responsible for proper conduct and integrity in all of their scholastic work. They must follow a professor's instructions when completing tests, homework, and laboratory reports, and must ask for clarification if the instructions are not clear. In general, students should not give or receive aid when taking exams, or exceed the time limitations specified by the professor. In seeking the truth, in learning to think critically, and in preparing for a life of constructive service, honesty is imperative. Honesty in the classroom and in the preparation of papers is therefore expected of all students. Each student has the responsibility to submit work that is uniquely his or her own. All of this work must be done in accordance with established principles of academic integrity.

An act of academic dishonesty or plagiarism may result in failure for a project or in a course. Plagiarism involves representing another person's ideas or scholarship, including material from the Internet, as your own. Cheating or acts of academic dishonesty include (but are not limited to) fabricating data, tampering with grades, copying, and offering or receiving unauthorized assistance or information.

3) The Student Conduct Code:
Students will be held to the rules and regulations of the Student Conduct Code as described in the Lincoln University Student Handbook. In particular, excessive talking, leaving and reentering class, phones or pagers, or other means of disrupting the class will not be tolerated and students may be asked to leave. Students who constantly disrupt class may be asked to leave permanently and will receive an F.

4) The Core Curriculum Learner Competencies:
All courses offered through the Department of Mathematics and Computer Science require students to meet at least the following out of the 8 Core Curriculum Learner Competencies:
(1) Listen and effectively communicate ideas through written, spoken, and visual means;
(2) Think critically via classifying, analyzing, comparing, contrasting, hypothesizing, synthesizing, extrapolating, and evaluating ideas;
(6) Apply and evaluate quantitative reasoning through the disciplines of mathematics, computational science, laboratory science, selected social sciences and other like-minded approaches that require precision of thought;
(8) Demonstrate positive interpersonal skills by adhering to the principles of freedom, justice, equality, fairness, tolerance, open dialogue and concern for the common good.

Note:
* The instructor of a given section of the course may make some modifications to the evaluation as well as to the rest of the syllabi including but not limited to; the grade weights, number of tests, and test total points.

**The grading scale guideline includes a 2-point flexibility.
Please consult with the department chairperson for any program updates or corrections which may not be yet reflected on this page _ last updated 03/28/2010.